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Adaptive walks on time-dependent fitness landscapes
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The idea of adaptive walks on fitness landscapes as a means of studying evolutionary processes on large time
scales is extended to fitness landscapes that are slowly changing over time. The influence of ruggedness and of
the amount of static fitness contributions is investigated for model landscapes derived from Kauffman’sNK
landscapes. Depending on the amount of static fitness contributions in the landscape, the evolutionary dynam-
ics can be divided into a percolating and a nonpercolating phase. In the percolating phase, the walker performs
a random walk over the regions of the landscape with high fitness.@S1063-651X~99!06108-5#

PACS number~s!: 87.10.1e
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Most work on Darwinian evolution so far has been co
cerned with evolution in constant environments, on the o
hand~e.g., see@1–3# for the field of population genetics, o
@4# for adaptive walks!, and coevolutionary processes, on t
other hand~e.g., see@5,6# for ecological models like Lotka-
Volterra systems, or@7–9# for artificial life type computer
simulations!. The case in which a species is subjected t
changing environment, without being able to influence it, h
been studied only rarely. Most work of the latter type
considering a single periodically changing optimum@10–13#.
In such situations, the evolutionary dynamics acts as a
pass filter@14#. The optimum can only be tracked if the o
cillation frequency is sufficiently low.

In this work, we are considering evolution in high
dimensional fluctuating fitness landscapes, with differ
amounts of dynamic and static fitness contributions. The m
tivation for this work comes fromin vivo evolution of pro-
teins. Living organisms use a huge amount of different p
teins. Where does this diversity originate from? Wh
looking at a single protein in a particular species, the prot
appears to be in a local optimum, without any better muta
nearby. However, to account for the observed diversity, th
must be mechanisms that make it possible to move on f
one local optimum to another sporadically. The simpl
mechanism one can consider is one in which large mutat
sometimes carry a protein into a distant region in the ge
type space. Although this mechanism cannot completely
rejected, it is unlikely that large mutations play a predom
nant role in protein evolution. A large mutation is essentia
a random jump into the genotype space, leading with
tremely high probability to an amino acid sequence that c
not fold correctly anymore. Therefore, large mutations w
in almost all cases not produce a viable protein.

A mechanism that works with small mutations is drift o
neutral networks. It has been mostly studied for RNA@15–
17#, but it can also be considered in the case of proteins@18#.
On a neutral network, mutations change the amino acid
quence, but leave the protein fold and, more importantly,
protein’s active region unaltered. From time to time, t
drifting sequence comes close to a sequence with highe
ness, and then a transition to a new local optimum ta
place. This theory works well forin vitro experiments@19#,
but it is unclear whether enough neutrality existsin vivo to
allow for sufficient drift@20–22#. There exists evidence tha
PRE 601063-651X/99/60~2!/2154~6!/$15.00
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in some cases, no neutral amino acid substitutions exis
living organisms~e.g., forDrosophila m.’s alcohol dehydro-
genase locus@23#! and that the environment can select f
extremely small fitness differences@24,25#. The reason this
cannot be observed inin vitro experiments is probably tha
the experiments are not sensitive enough@25#.

Benner and Ellington@20# have suggested a differen
mechanism that could work with small mutations and in t
absence of neutrality. They propose that slow environme
changes generate a constant genetic drift which can acc
for the protein diversity. This idea has never been stud
quantitatively in a mathematical model.

Here, we are going to study a model which demonstra
that indeed a slowly changing environment can gene
something like a constant genetic drift. We will call this dr
‘‘environmentally guided drift.’’ It is not a diffusion process
such as neutral drift@1#. The population as a whole move
through the genotype space, since transitions to selecti
advantageous states happen very fast, as first-order p
transitions@26,27#. Adaptive walks are particularly suitabl
to study such phenomena, and we will use them through
this paper, neglecting population effects or crossover
genotypes.

The statement that the population always remains loca
in the genotype space, and that hence the dynamics ca
approximated with an adaptive walk, can only be justified
the environmental changes are very slow. If this is the ca
i.e., if the fitness landscape does change only margin
over time intervals of the length of typical waiting time
between two transitions, the adaptive walk approximat
should be valid under the same assumptions as in static l
scapes. Note that this means, on the other hand, that in
model the adaptive walk must be allowed to do a numbe
jumps prior to significant changes in the landscape. A
consequence, the walker will often have the chance to re
a local optimum before it starts out for a new peak beca
of the deforming landscape. Later in this paper, we will d
cuss the adiabatic limit, which is an even slower time sca
In the adiabatic limit, the changes happen so slowly that
every change in the fitness landscape the adaptive walk
always find a local optimum.

As example landscapes, we choose Kauffman’sNK land-
scapes@4,28#, which are spin-glass-like landscapes co
monly used for the study of adaptive walks. Although th
2154 © 1999 The American Physical Society
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PRE 60 2155ADAPTIVE WALKS ON TIME-DEPENDENT FITNESS . . .
cannot be directly related to the true landscapes underl
in vivo protein evolution, their tunable degree of ruggedn
makes them a good tool to study general effects in rug
landscapes. In anNK landscape, the fitness of a bit string
length N is defined as the average over each bit’s fitn
contribution. The contributions depend on the state of
corresponding bit as well as on the state ofK other bits
interacting with it. We can write the fitnessf as:

f 5
1

N (
i 51

N

f i~$S% i !, ~1!

where$S% i is the state of theK11 bits influencing the fitness
contribution of biti. In Kauffman’s original formulation, the
functionsf i($S% i) are realized as tables containing a differe
quenched random fitness contribution for every state$S% i .
Here we are interested in a time-dependent form of Eq.~1!.
One possibility has been proposed by Levitan and Kauffm
@29#, who have studied the case that the fitness canno
measured exactly. In their work, the measured fitnessf 8
equals the true fitnessf plus a noise termg(t). Such an
approach has proven suitable to study the effects of nois
chemical engineering problems@30#. However, it does not
work here, since we are interested in local deformations
the landscape, and not in a global noise-induced shift. W
we do instead is to use time-dependent functionsf i($S% i ,t).
Note the general difference in the model of Levitan a
Kauffman and of ours. In their model, the fitness landsc
is static, but can only be measured with finite accuracy
our model, the fitness landscape itself is changing, but
fitness can be measured exactly. Considering the long
scale we are addressing, we can assume that noise doe
play a prominent role here. The single walker represents
mean of a population, as noted above. In the popula
mean, the noise is averaged out. We will later discuss h
the model could be altered for noise too intense to allow t
assumption, or for populations so small that destabiliz
effects can occur.

We choose the functionsf i($S% i ,t) to be continuous in
time. Noisy, discontinuous fitness contributions seem to
inappropriate to model a slowly changing environment.
principle, one could of course add a noise term on top
each fitness contribution, or study landscapes with mi
noisy and continuous contributions, but this is not our obj
tive here.

Not necessarily all fitness contributions need to be tr
time dependent. Some may be equal to a constant,

f i~$S% i ,t !5Ci ,$S% i . ~2!

It is useful to keep track of the amount of static contributio
in the landscape. We denote the fraction of static contri
tions by f S. Adaptive walks on time-dependentNK land-
scapes show several distinct classes of behavior, m
strongly influenced byf S.

So far we have described the basis of our model. Now
have to specify the actual form of the fitness contributio
For data analysis, it is useful to impose periodic bound
conditions on the fitness landscape, i.e.,

f ~ t1T!5 f ~ t !, ~3!
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with oscillation periodT. Throughout the rest of this work
we will stick to this choice. Its advantage rests in the ea
comparison of a bit string’s evolution in different oscillatio
periods. In particular, it allows us to use the concept of
vironmentally linked networks introduced below.

The form of the functionsf i($S% i ,t) can in principle be
arbitrarily complicated. We are going to consider a simp
trigonometric time dependency,

f i~$S% i ,t !5
1

2
@sin~v$S% i

t1d$S% i
!11#. ~4!

This introduces only a single additional constant per fitn
contribution, if compared to the static landscape. The f
quenciesv$S% i

and the phasesd$S% i
are chosen randomly

when constructing the landscape, and are then kept fixed
all timest. The phases are distributed uniformly in the inte
val @0;2p) so that the resulting fitness landscape is hom
geneous in time. We set the frequencies tov$S% i

52pn$S% i
/T, with n$S% i

being integral, andT being arbitrary,

but the same for allv$S% i
, to obtain a periodic fitness land

scape with oscillation periodT. If we want a fitness contri-
bution to be constant, we set the corresponding freque
v$S% i

to 0.
We have done a large number of simulations with diffe

ent choices forN and K, with different sets of oscillation
frequencies, and also with more complicated functio
f i($S% i ,t), in which the oscillations have additional rando
amplitudes and offsets. In all cases, the basic patterns
very similar. The parameters having the strongest influe
on the observed behavior are the ruggednessK and the frac-
tion of static fitness contributionsf S. In Figs. 1–3, some
typical runs of adaptive walks in oscillatingNK landscapes
are presented. In the simulations leading to these plots,
usedN520 andK58. Additionally, we employed only a
single oscillation mode. This means that all frequenciesv$S% i

were either set to zero or set to some fixed valuev52p/T.
The oscillation periodT was set toT51000, which can be
considered large in a system withN520. A local optimum
can typically be found in about 100 time steps in a staticNK
landscape with suchN. The adaptive walk was performe
exactly as in Kauffman’s original work: a random point m
tation was accepted if it increased the bit string’s fitne
Otherwise, the mutation was rejected.

FIG. 1. The evolutionary dynamics is chaotic for smallf S.
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Figure 1 shows an example of the evolutionary dynam
with a relatively low fraction of static fitness contribution
The resulting pattern is a chaotically changing fitness. W
almost every accepted mutation, a new genotype is enc
tered. The environmental changes constantly lead the wa
into regions previously not visited. This reminds one of
random walk. However, there are some differences betw
the adaptive walk and a random walk. We will discuss th
below.

The behavior of the adaptive walk changes drastica
with increasingf S. The higher amount of static fitness co
tributions reduces the number of possible advantageous
tations in every time step. The bits connected to static c
tributions freeze out in a locally optimal state, and only t
sites connected to oscillating contributions can still chan
Hence, the dynamics gets confined in a small region of
genotype space. The same mutational patterns are seen
and over again in the different oscillation periods. In t
fitness plots, we can identify this behavior with a periodic
almost periodic change of the fitness, as shown in Fig
Using the language of dynamic systems, we can say tha
attractor of an adaptive walk on an oscillating landscape w
intermediatef S is a noisy limit cycle. With some small prob
ability p, the process can leave a limit cycle. Several tran
tions between such metastable limit cycles are shown in
3. The mean fitness can increase or decrease because
transitions. The frequency with which transitions occur d
pends on the actual value off S. The largerf S, the rarer can
transitions be observed.

FIG. 2. With increasingf S, some bits in the bit string freez
out, and the evolutionary pattern becomes more and more osc
tory.

FIG. 3. The oscillatory states are metastable, and transit
between them can occur.
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These metastable states remind one very much of
metastability induced by finite populations on static lan
scapes with a high degree of neutrality@31–33#, however
they are generated through a completely different mec
nism. A slight qualitative difference between the two typ
of metastability is that here the transitions lead regularly t
decrease of a metastable state’s average fitness, where
neutrality-induced transitions, this is mostly not the ca
Nevertheless, the work of Nimwegenet al. shows that with
very small populations, the evolutionary dynamics on a la
scape with neutrality can as well display transitions lead
to a decrease of fitness@32#. The interesting point of our
findings here is that we find metastability under the compl
absence of neutrality.

Let us now address the question of whether the transiti
actually lead to an increase in fitness, or whether adva
geous and disadvantageous transitions balance each oth
Fig. 4, we show the expected fitness as a function of time
100 oscillations with a period ofT52560. The expected fit-
ness was obtained by averaging over 50 independent r
We have chosenf S50.6, which is well in the metastabl
regime. We observe that the most important fitness gai
reached during the first couple of oscillations~the curve
starts from^ f &50.5 for t50). Nonetheless, for the complet
duration of the 100 oscillations, we observe a constant sl
increase in the fitness. A linear fit to the expected fitn
from time step 104 to the end of the recording gives a
increase in fitness of 1.0331024 per oscillation period. Ul-
timately, for much longer simulation runs, the expected
ness reaches an asymptotic value. Note that the slight fit
increase over many oscillation periods is an effect peculia
the metastable regime. In the chaotic regime the expe
fitness reaches its asymptotic value very quickly, after a f
oscillation periods.

The adaptive walk’s efficiency to find regions of hig
fitness can be judged from the mean fitness encountered
ing the walk. Figure 5 shows the mean fitness, averaged
several independent adaptive walks, as a function of the
cillation period T. The curve corresponding to the chaot
regime, with f S50, starts off at a mean fitness of 0.5 fo
small T. This is the average fitness on the landscape,
hence the walker approximately does a random walk on
landscape. For largerT, the mean fitness quickly grows an
reaches a value close to the average of a local optimum in
landscape. Although the movement in the genotype sp

la-

s

FIG. 4. Average fitness over time in adaptive walks over a la
scape withf S50.6. The dashed line indicates the result of a lea
squares fit. The exact slope ism54.008 243102862.057310210.
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PRE 60 2157ADAPTIVE WALKS ON TIME-DEPENDENT FITNESS . . .
appears to be chaotic, the expected fitness of the walke
any point in time is as large as the expected highest fitnes
adaptive walk in a comparable static landscape would
counter. Therefore, for largeT the walker’s movement can
be considered as a random walk confined to the region
high fitness in the genotype space. When we increase
amount of static contributions in the landscape, the aver
fitness is above 0.5 even for very fast environmen
changes. For largerT, the average fitness increases towa
the average height of local optima in the landscape, and e
significantly above it. The latter occurs in time-depend
landscapes as long as only a tiny amount of time-depen
contributions is present. To understand why this happe
consider a bit string in which all but one bit have only sta
contributions. The remaining bit may also give a static co
tribution if it is set to 0, and a time-dependent one if it is s
to 1. For the times when the time-dependent contribution
smaller than the static one, the bit will be set to 0, and o
erwise it will be set to 1. This effectively increases the av
age height of local optima in dynamic landscapes. The ef
is most pronounced if the number of static contributions
moderately large, forf S around 0.8.

At this point, it is interesting to ask what proportion of th
genotype space can actually be reached through environm
tally guided drift. The question can be addressed with
concept ofenvironmentally linked networks~EL networks!.
We define an EL network to be the set of all points in t

FIG. 5. Mean fitness encountered during an adaptive walk
function of the oscillation periodT. The fitness was averaged ov
50 independent adaptive walks, of which each endured 100 osc
tion periods.
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genotype space the adaptive walk can reach at timesnT, n
50,1,2,. . . , starting from a fixed position in the genotyp
space. We will say an EL network percolates if it consists
infinitely many points. This definition is similar to the usu
definition of the percolating cluster on the Bethe lattice, a
is the appropriate way to define percolation in hig
dimensional spaces@34#. It can be applied literally only in
the limit N˜`. However, the genotype space grows so f
with increasingN that this restriction can be neglected.

If the walker is for smallf S indeed doing a random walk
over the landscape, or over the landscape’s regions of h
fitness, as we supposed above, then we should find a pe
lating EL network in the chaotic regime.

The study of EL networks in oscillatingNK landscapes is
computationally very demanding, since we have to
through the full oscillation periods in the simulation. Henc
we have to restrict ourselves to moderateT and N. In the
examples below, we have again usedv i5v52p/T with T
51000, as well asN520.

Figure 6 shows the fractiong of new genotypes among a
the genotypes encountered at the beginning of each osc
tion period. This is a measure for the size of an EL netwo
A value near 1 means a new genotype has been encoun
in almost every oscillation period. On the other hand, a va
near 0 means the network’s size is small, thus confining
adaptive walk in a limited region of the genotype space.
the limit of infinitely many oscillation periods, only perco
lating networks can have a positiveg, whereas finite net-
works yieldg50. Therefore,g is a proper order paramete
indicating a percolation transition. Clearly, in numerical e
periments the number of oscillation periods over which
measurement is taken is finite, and therefore we will obse
a positiveg even in the nonpercolating regime. In the case
Fig. 6, the valueg was obtained from averaging over 6
adaptive walks, each on a different fitness landscape. E
adaptive walk endured 200 oscillation periods. The error b
present the standard deviations of the single measureme

Let us begin the discussion of Fig. 6 with the graph on
right, for K58. We find ag close to 1 for smallf S, and a
vanishing g for f S'1. The standard deviations are ve
small in both limiting regimes. In the region aboutf S'0.5, a
sharp drop ing can be observed, accompanied with an en
mous increase in the error bars. This is good evidence for
existence of a percolation transition with critical pointf S*
around 0.5. The large error bars are a sign for critical fl

a

la-
The
FIG. 6. Fraction of newly encountered genotypesg at the beginning of each oscillation period in oscillating fitness landscapes.
quantityg was averaged over 60 independent adaptive walks, of which each endured 200 oscillations with periodT51000.
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2158 PRE 60CLAUS O. WILKE AND THOMAS MARTINETZ
tuations, observed in second-order phase transitions.
graph on the left of Fig. 6, forK52, shows a very differen
behavior. The quantityg does not reach higher than abo
0.2, and the error bars are large for the whole range off S.
We do not see a clear percolation transition for this mu
less rugged landscape. The large error bars indicate tha
finite g for small f S is rather an artifact due to the finit
sampling than a true result. We have done comparable s
lations for the range ofK from 0 up to 14, and what we
generally observe is that the transition becomes sharper
increasingK.

We can understand the above observation in the adiab
limit. For the case of a Fujiyama landscape (K50), the EL
network degenerates to a single point in this limit, and p
colation can consequently not be observed. On the o
hand, the completely random landscape we obtain foK
5N21 presents a multitude of local optima, and t
changes in the landscape provide the opportunity to hop f
one local optimum to another in a random fashion during
oscillation periods. The landscapes with intermediateK in-
terpolate between the two extremes. This argument sh
that ruggedness must generally promote the movement in
genotype space for the low-f S regime, a situation completel
opposite to the case of static landscapes, where ruggedn
regarded as an impediment to the movement in the geno
space. If the changes happen on a slow enough time s
the increased mobility doesnot lead to an error catastroph
through which all information is lost, such as the breakdo
of the quasispecies for large mutation rates@35#. As we saw
in Fig. 5, the fitness is constantly in the region of avera
local optima. We observe this also in the example run d
played in Fig. 1. The fitness is chaotically changing, but i
always well above the landscape mean of 0.5. An error
tastrophe occurs only if the environmental changes hap
very fast compared to the typical adaptation time of the s
tem.

So far, we disregarded noise or loss of information b
cause of very small populations in our model. Both have
effect to enable the acceptance of mutations leading to lo
fitness. Here, we could incorporate them by adding nois
the fitness as in@29#, or by accepting bad mutations wit
some probability. As long as these mechanisms do not
to an error catastrophe on a static landscape, they should
alter very much the dynamics on a slowly changing lan
scape from what we have found here.

Evolution in a slowly changing environment follows
dynamics very different from the situation in a fixed env
ronment. The environmentally guided drift drives genes
of local optima, and drags them around in the genoty
space. We have presented evidence for the existence
giant EL network forf S below some criticalf S* in landscapes
with sufficient ruggedness. Consequently, in this regime
whole genotype space can be transversed by means of
ronmentally guided drift. The guided drift can provide—
the absence of any neutral pathways in the fitn
landscape—an efficient mechanism to generate consta
new genotypes, albeit at every single point in time the s
tem seems to be trapped in a local optimum. We could sh
that the efficiency of the environmentally guided drift is r
lated to the ruggedness of the landscape. A more rug
landscape provides more opportunities to move around u
he

h
the

u-

ith

tic

r-
er

m
e

s
he

s is
pe
le,

n

e
-

s
a-
en
-

-
e
er
to

ad
not
-

t
e
f a

e
vi-

s
tly
-
w

ed
er

environmental changes than a landscape with only a
peaks. Consequently, the rugged landscapes observed in
tein evolution@20# can promote protein evolution in an eve
changing environment, instead of hindering it. If we have
population that decomposes into several subpopulations
coupled with each other through selection, these subpop
tions will disperse and move to completely different regio
of the genotype space because of environmentally gui
drift, even if the process starts off from a completely hom
geneous population and if all individuals in the system f
the same environmental changes at the same time. The
coupling of the subpopulations can occur, for example, if
population lives in a very large geographical territory, so th
individuals living in one part do not directly interact wit
individuals living in another part, or if a physical barrie
forms at one point in time that divides the territory into se
eral independent regions. As a consequence, rugged l
scapes combined with slow environmental changes sho
inevitably lead to a large variety of different evolutiona
solutions for the same problems.

Although the EL networks used here for data analysis
only meaningful in periodic landscapes, the conclusio
drawn from their study should also hold in nonperiodic si
ations. The reason why environmentally guided drift b
comes so efficient for smallf S is that constantly new loca
optima appear nearby. Therfore, if the changes are nonp
odic, but the landscape has sufficient ruggedness, the a
tive walk should similarly behave like a random walk ov
the landscape’s regions of high fitness.

An effect tightly connected to the periodicity of the lan
scape, on the other hand, is the appearance of limit cyc
The dynamics in oscillatingNK landscapes is above the pe
colation transition dominated by noisy limit cycles, with sp
radically occurring transitions from one limit cycle to an
other. The system goes through several noisy limit cyc
until a stable limit cycle, or a stable fixed point, is reache
This effect reminds one of the behavior of evolution on lan
scapes with a high degree of neutrality. There, evolution p
ceeds on neutral networks, with sporadic transitions betw
them, until a stable local optimum is reached.

The model studied in the present paper, i.e., an adap
walk on an oscillatingNK landscape, is certainly too sim
plistic to be accounted for as a realistic model of thein vivo
evolution of proteins in a changing environment. In partic
lar, it can be argued whether sinusoidally changing fitn
contributions are justified. Nevertheless, such simple mod
often capture the qualitative properties of more realistic s
ations. Similar percolation transitions can probably be fou
also in other time-dependent landscapes with sufficient r
gedness.

In future work, it should be interesting to study the pe
colation transition in more detail, and to determine for wh
K a percolating regime actually exists. Furthermore, the
terplay between static and dynamic fitness contributio
should also be investigated in other fitness landscapes.

We would like to thank S. Benner for introducing us
this field, T. Hirst for providing us with the manuscript o
Ref. @14#, C. Ronnewinkel for carefully reading this manu
script, and T. Schmauch for double-checking the behavio
oscillating NK models for a number of different paramet
settings.
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