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Adaptive walks on time-dependent fitness landscapes
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The idea of adaptive walks on fithess landscapes as a means of studying evolutionary processes on large time
scales is extended to fitness landscapes that are slowly changing over time. The influence of ruggedness and of
the amount of static fitness contributions is investigated for model landscapes derived from KaufffKan's
landscapes. Depending on the amount of static fitness contributions in the landscape, the evolutionary dynam-
ics can be divided into a percolating and a nonpercolating phase. In the percolating phase, the walker performs
a random walk over the regions of the landscape with high fit}&€39063-651X99)06108-3

PACS numbe(s): 87.10+e

Most work on Darwinian evolution so far has been con-in some cases, no neutral amino acid substitutions exist in
cerned with evolution in constant environments, on the ondiving organisms(e.g., forDrosophila m's alcohol dehydro-
hand(e.g., sed1-3] for the field of population genetics, or genase locu$23]) and that the environment can select for
[4] for adaptive walkl and coevolutionary processes, on theextremely small fithess differencg®4,25. The reason this
other hande.g., sed5,6] for ecological models like Lotka- cannot be observed im vitro experiments is probably that
Volterra systems, of7—9] for artificial life type computer the experiments are not sensitive eno(ig5].
simulations. The case in which a species is subjected to a Benner and Ellington[20] have suggested a different
changing environment, without being able to influence it, hagnechanism that could work with small mutations and in the
been studied only rarely. Most work of the latter type isabsence of neutrality. They propose that slow environmental
considering a single periodically changing optimit6-13. changes generate a constant genetic drift which can account
In such situations, the evolutionary dynamics acts as a lovior the protein diversity. This idea has never been studied
pass filter[14]. The optimum can only be tracked if the os- quantitatively in a mathematical model.
cillation frequency is sufficiently low. Here, we are going to study a model which demonstrates

In this work, we are considering evolution in high- that indeed a slowly changing environment can generate
dimensional fluctuating fitness landscapes, with differensomething like a constant genetic drift. We will call this drift
amounts of dynamic and static fithess contributions. The mo=environmentally guided drift.” It is not a diffusion process,
tivation for this work comes fronin vivo evolution of pro- such as neutral driffl]. The population as a whole moves
teins. Living organisms use a huge amount of different prothrough the genotype space, since transitions to selectively
teins. Where does this diversity originate from? Whenadvantageous states happen very fast, as first-order phase
looking at a single protein in a particular species, the proteiriransitions[26,27. Adaptive walks are particularly suitable
appears to be in a local optimum, without any better mutant$o study such phenomena, and we will use them throughout
nearby. However, to account for the observed diversity, ther¢his paper, neglecting population effects or crossover of
must be mechanisms that make it possible to move on frorgenotypes.
one local optimum to another sporadically. The simplest The statement that the population always remains located
mechanism one can consider is one in which large mutationi the genotype space, and that hence the dynamics can be
sometimes carry a protein into a distant region in the genoapproximated with an adaptive walk, can only be justified if
type space. Although this mechanism cannot completely béhe environmental changes are very slow. If this is the case,
rejected, it is unlikely that large mutations play a predomi-i.e., if the fitness landscape does change only marginally
nant role in protein evolution. A large mutation is essentiallyover time intervals of the length of typical waiting times
a random jump into the genotype space, leading with exbetween two transitions, the adaptive walk approximation
tremely high probability to an amino acid sequence that canshould be valid under the same assumptions as in static land-
not fold correctly anymore. Therefore, large mutations will scapes. Note that this means, on the other hand, that in our

in almost all cases not produce a viable protein. model the adaptive walk must be allowed to do a number of
A mechanism that works with small mutations is drift on jumps prior to significant changes in the landscape. As a
neutral networks. It has been mostly studied for RNA—  consequence, the walker will often have the chance to reach

17], but it can also be considered in the case of protgi8s  a local optimum before it starts out for a new peak because
On a neutral network, mutations change the amino acid sesf the deforming landscape. Later in this paper, we will dis-
guence, but leave the protein fold and, more importantly, theuss the adiabatic limit, which is an even slower time scale.
protein’s active region unaltered. From time to time, theln the adiabatic limit, the changes happen so slowly that for
drifting sequence comes close to a sequence with higher fievery change in the fitness landscape the adaptive walk can
ness, and then a transition to a new local optimum takeslways find a local optimum.

place. This theory works well fan vitro experimentg19], As example landscapes, we choose Kauffmaiksland-

but it is unclear whether enough neutrality existsvivoto  scapes[4,28], which are spin-glass-like landscapes com-
allow for sufficient drift[20—22. There exists evidence that monly used for the study of adaptive walks. Although they

1063-651X/99/6()/21546)/$15.00 PRE 60 2154 © 1999 The American Physical Society



PRE 60 ADAPTIVE WALKS ON TIME-DEPENDENT FITNESS ... 2155

cannot be directly related to the true landscapes underlyin¢ 09 ' ' ' ' - - '
in vivo protein evolution, their tunable degree of ruggedness
makes them a good tool to study general effects in ruggec
landscapes. In aNK landscape, the fithess of a bit string of
length N is defined as the average over each bit's fitness
contribution. The contributions depend on the state of the & 0.7 [t |ikil!{i i}
corresponding bit as well as on the state kofother bits & [
interacting with it. We can write the fitne¢sas:
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where{S}; is the state of th& + 1 bits influencing the fitness
contribution of biti. In Kauffman’s original formulation, the
functionsf;({S};) are realized as tables containing a different o ) )
quenched random fitness contribution for every st&k. with QSC|II_at|0n pe_rlodT. _Throughout the rest of t_hls work,
Here we are interested in a time-dependent form of Ey. W€ will _st|ck to th|_s ch.0|ce. Its adyan_tagg rests in the easy
One possibility has been proposed by Levitan and Kauffmagomparison of a bit string’s evolution in different oscillation
[29], who have studied the case that the fithess cannot dégr|ods. In par_tlcular, it allows.us to use the concept of en-
measured exactly. In their work, the measured fitngss Vironmentally linked networks introduced below.

equals the true fithesk plus a noise terng(t). Such an The form of the functiond;({S}; ,t) can in principle be
approach has proven suitable to study the effects of noise irbitrarily complicated. We are going to consider a simple
chemical engineering probleni80]. However, it does not trigonometric time dependency,

work here, since we are interested in local deformations of

the landscape, and not in a global noise-induced shift. What 1

we do instead is to use time-dependent functibGsS}; ,t). fidSh b= lsin(wg t+ds,) +1]. S
Note the general difference in the model of Levitan and

Kauffman and of ours. In their model, the fitness Iandscapel_his introduces only a single additional constant per fitness
is static, but can only be measured with finite accuracy. In

our model, the fitness landscape itself is changing, but thcontrlbutlon, if compared to the static landscape. The fre-

fitness can be measured exactly. Considering the long tim%uenmesfu{s}i and the phasesys, are chosen randomly

scale we are addressing, we can assume that noise does W4ten constructing the landscape, and are then kept fixed for
play a prominent role here. The single walker represents th@ll imest. The phases are distributed uniformly in the inter-
mean of a population, as noted above. In the populatiof@ [0;27) so that the resulting fitness landscape is homo-
mean, the noise is averaged out. We will later discuss ho/eéneous in time. We set the frequencies tag,

the model could be altered for noise too intense to allow that 27nys) /T, with n;g; being integral, and” being arbitrary,

assumption, or for populations so small that destabilizinghyt the same for allogs, , to obtain a periodic fitness land-

effects can occur. scape with oscillation period. If we want a fitness contri-

_ We choose the function§({S};,t) to be continuous in p ion to be constant, we set the corresponding frequency
time. Noisy, discontinuous fithess contributions seem to b%{s} t0 0
i )

inappropriate to model a slowly changing environment. In . . o

principle, one could of course add a noise term on top of We h.ave done a large qumb_er of simulations W'.th Q'ffer'

each fithess contribution, or study landscapes with mixe nt ch0|c_es foN and K, W.'th different sets of oscﬂlauop
frequencies, and also with more complicated functions

noisy and continuous contributions, but this is not our objec ) . I -
Y J fi({S}; ,t), in which the oscillations have additional random

tive here. litud d offsets. In all the basic patt
Not necessarily all fithess contributions need to be trulyampl uaes and ofisets. n afl cases, e basic paiemns are

time dependent. Some may be equal to a constant, very similar. The parameters having the strongest influence
P y d on the observed behavior are the ruggediessd the frac-

f.({S},t)=C; ,{S}. 2) tion of static fitness contributionss. In Figs. 1-3, some
typical runs of adaptive walks in oscillatindK landscapes
It is useful to keep track of the amount of static contributions@ré presented. In the simulations leading to these plots, we
in the landscape. We denote the fraction of static contripulS€dN=20 andK=8. Additionally, we employed only a
tions by f5. Adaptive walks on time-dependeNK land- single oscillation mode. This means that all frequenm@i
scapes show several distinct classes of behavior, mostere either set to zero or set to some fixed value2#/T.
strongly influenced by s. The oscillation periodl’ was set toT =1000, which can be
So far we have described the basis of our model. Now weonsidered large in a system wikh=20. A local optimum
have to specify the actual form of the fitness contributionscan typically be found in about 100 time steps in a stisitic
For data analysis, it is useful to impose periodic boundarjandscape with suciN. The adaptive walk was performed
conditions on the fitness landscape, i.e., exactly as in Kauffman’s original work: a random point mu-
tation was accepted if it increased the bit string’s fitness.
f(t+T)=1(1), (3)  Otherwise, the mutation was rejected.

FIG. 1. The evolutionary dynamics is chaotic for smfgl
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FIG. 2. With increasingfg, some bits in the bit string freeze FIG. 4. Average fitness over time in adaptive walks over a land-
out, and the evolutionary pattern becomes more and more oscillsscape withfs=0.6. The dashed line indicates the result of a least-
tory. squares fit. The exact sloperis=4.008 24< 10" 8+2.057x 107 °,

Figure 1 shows an example of the evolutionary dynamics These metastable states remind one very much of the
with a relatively low fraction of static fitness contributions. metastability induced by finite populations on static land-
The resulting pattern is a chaotically changing fitness. Witrscapes with a high degree of neutrali§1-33, however
almost every accepted mutation, a new genotype is encouthey are generated through a completely different mecha-
tered. The environmental changes constantly lead the walkéism. A slight qualitative difference between the two types
into regions previously not visited. This reminds one of aof metastability is that here the transitions lead regularly to a
random walk. However, there are some differences betweefiecrease of a metastable state’s average fitness, whereas in
the adaptive walk and a random walk. We will discuss thenneutrality-induced transitions, this is mostly not the case.
below. Nevertheless, the work of Nimweget al. shows that with

The behavior of the adaptive walk changes drasticallyvery small populations, the evolutionary dynamics on a land-
with increasingfs. The higher amount of static fitness con- scape with neutrality can as well display transitions leading
tributions reduces the number of possible advantageous mie a decrease of fitned82]. The interesting point of our
tations in every time step. The bits connected to static confindings here is that we find metastability under the complete
tributions freeze out in a locally optimal state, and only theabsence of neutrality.
sites connected to oscillating contributions can still change. Let us now address the question of whether the transitions
Hence, the dynamics gets confined in a small region of th@ctually lead to an increase in fitness, or whether advanta-
genotype space. The same mutational patterns are seen o@&ous and disadvantageous transitions balance each other. In
and over again in the different oscillation periods. In theFig. 4, we show the expected fitness as a function of time for
fitness plots, we can identify this behavior with a periodic or100 oscillations with a period of =2560. The expected fit-
almost periodic change of the fitness, as shown in Fig. 2ness was obtained by averaging over 50 independent runs.
Using the language of dynamic systems, we can say that thé/e have choserig=0.6, which is well in the metastable
attractor of an adaptive walk on an oscillating landscape wittregime. We observe that the most important fitness gain is
intermediatef 5 is a noisy limit cycle. With some small prob- reached during the first couple of oscillatiofthe curve
ability p, the process can leave a limit cycle. Several transistarts fronXf)=0.5 fort=0). Nonetheless, for the complete
tions between such metastable limit cycles are shown in Figduration of the 100 oscillations, we observe a constant slight
3. The mean fitness can increase or decrease because of therease in the fitness. A linear fit to the expected fitness
transitions. The frequency with which transitions occur de-from time step 16 to the end of the recording gives an
pends on the actual value 6f. The largerfg, the rarer can increase in fitness of 1.0810"* per oscillation period. Ul-

transitions be observed. timately, for much longer simulation runs, the expected fit-
ness reaches an asymptotic value. Note that the slight fitness
0.9 ' ' ' ' ' - - ' - increase over many oscillation periods is an effect peculiar to

the metastable regime. In the chaotic regime the expected
fithess reaches its asymptotic value very quickly, after a few
oscillation periods.
The adaptive walk’s efficiency to find regions of high
T fitness can be judged from the mean fithess encountered dur-
ing the walk. Figure 5 shows the mean fithess, averaged over
several independent adaptive walks, as a function of the os-
cillation period T. The curve corresponding to the chaotic
regime, withfg=0, starts off at a mean fitness of 0.5 for
05 2'0 4'0 P 8'0 1(']0 0 10 160 12;0 200 small T. This is the average fitness on the landscape, and
time steps £/1000 hence the walker approximately dpes a random walk on the
landscape. For largér, the mean fitness quickly grows and
FIG. 3. The oscillatory states are metastable, and transitionseaches a value close to the average of a local optimum in the
between them can occur. landscape. Although the movement in the genotype space

fitness f

N =20,K =8, fs = 0.55,T = 1000
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08 - - genotype space the adaptive walk can reach at timigsn
=0,1,2, .., starting from a fixed position in the genotype
space. We will say an EL network percolates if it consists of
...................................... O S L S s infinitely many points. This definition is similar to the usual
definition of the percolating cluster on the Bethe lattice, and
is the appropriate way to define percolation in high-
dimensional spacel34]. It can be applied literally only in
the limit N— . However, the genotype space grows so fast
;zzgz : with increasingN that this restriction can be neglected.
: fo=00 ot - If the walker is for smallf s indeed doing a random walk
over the landscape, or over the landscape’s regions of high
L fitness, as we supposed above, then we should find a perco-

10 100 1000 10000 ; ! ) .
oscillation period T lating EL network in the chaotic regime.

FIG. 5. Mean fitness encountered during an adaptive walk as a The Stl_de of EL networks in _OSC'”a_t'ngK landscapes is
function of the oscillation period. The fitness was averaged over COMputationally very demanding, since we have to go

50 independent adaptive walks, of which each endured 100 oscilldhrough the full 0§Ci”ati0” periods in the simulation. Hence,
tion periods. we have to restrict ourselves to moderdtand N. In the

examples below, we have again used= 0=2=/T with T

appears to be chaotic, the expected fitness of the walker at 1000, as well ad\=20.
any point in time is as large as the expected highest fitness an Figure 6 shows the fractiop of new genotypes among all
adaptive walk in a comparable static landscape would enthe genotypes encountered at the beginning of each oscilla-
counter. Therefore, for larg€ the walker's movement can tion period. This is a measure for the size of an EL network.
be considered as a random walk confined to the regions dh value near 1 means a new genotype has been encountered
high fitness in the genotype space. When we increase thg almost every oscillation period. On the other hand, a value
amount of static contributions in the landscape, the averageear O means the network’s size is small, thus confining the
fitness is above 0.5 even for very fast environmentapdaptive walk in a limited region of the genotype space. In
changes. For largeF, the average fitness increases towardghe limit of infinitely many oscillation periods, only perco-
the average height of local optima in the landscape, and eveéating networks can have a positivg whereas finite net-
significantly above it. The latter occurs in time-dependentorks yield y=0. Therefore,y is a proper order parameter
landscapes as long as only a tiny amount of time-dependefitdicating a percolation transition. Clearly, in numerical ex-
contributions is present. To understand why this happengeriments the number of oscillation periods over which the
consider a bit string in which all but one bit have only staticmeasurement is taken is finite, and therefore we will observe
contributions. The remaining bit may also give a static con-a positivey even in the nonpercolating regime. In the case of
tribution if it is set to 0, and a time-dependent one if it is setFig. 6, the valuey was obtained from averaging over 60
to 1. For the times when the time-dependent contribution idaptive walks, each on a different fitness landscape. Every
smaller than the static one, the bit will be set to 0, and othadaptive walk endured 200 oscillation periods. The error bars
erwise it will be set to 1. This effectively increases the aver-present the standard deviations of the single measurements.
age height of local optima in dynamic landscapes. The effect Let us begin the discussion of Fig. 6 with the graph on the
is most pronounced if the number of static contributions isright, for K=8. We find ay close to 1 for smalfs, and a
moderately large, fof 5 around 0.8. vanishing v for fg=~1. The standard deviations are very
At this point, it is interesting to ask what proportion of the small in both limiting regimes. In the region abd~0.5, a
genotype space can actually be reached through environmegharp drop iny can be observed, accompanied with an enor-
tally guided drift. The question can be addressed with thanous increase in the error bars. This is good evidence for the
concept ofenvironmentally linked network&EL networks. existence of a percolation transition with critical poifi
We define an EL network to be the set of all points in thearound 0.5. The large error bars are a sign for critical fluc-
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FIG. 6. Fraction of newly encountered genotypest the beginning of each oscillation period in oscillating fithess landscapes. The
quantity y was averaged over 60 independent adaptive walks, of which each endured 200 oscillations witf 0.
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tuations, observed in second-order phase transitions. Thenvironmental changes than a landscape with only a few
graph on the left of Fig. 6, fok =2, shows a very different peaks. Consequently, the rugged landscapes observed in pro-
behavior. The quantityy does not reach higher than about t€in evolution[20] can promote protein evolution in an ever
0.2, and the error bars are large for the whole rangésof changln_g environment, mstea_d of hindering it. If we have a
We do not see a clear percolation transition for this mucrpoﬁgllggOv:/]itw%tag(hacc?trr?grotshizdgfssceel\éitr%nsﬁﬁggguslﬁggg;u?gt
Igs_s rugged Iandscape. The large error bars indicate Fh_at ﬂ'ﬁ%ns will disperse and move to completely different regions
finite Y for small f5 is rather an artifact due to the f|n|t_e of the genotype space because of environmentally guided
f;gﬁgnf% rtht?]r(]e ?;Lugiri;u?r.ovr\r/]e Oh%\;/:)e 3)022 Cgr%pexﬁgtle;émlﬁrift, even if the process starts off from a completely homo-

; o _geneous population and if all individuals in the system feel
generally observe is that the transition becomes sharper wifhe same environmental changes at the same time. The de-
increasingK. o ) coupling of the subpopulations can occur, for example, if the
We can understand the above observation in the adlabatbbpulation lives in a very large geographical territory, so that
limit. For the case of a Fujiyama landscape<0), the EL  individuals living in one part do not directly interact with
network degenerates to a single point in this limit, and perindividuals living in another part, or if a physical barrier
colation can consequently not be observed. On the othe&brms at one point in time that divides the territory into sev-
hand, the completely random landscape we obtainkor eral independent regions. As a consequence, rugged land-
=N—1 presents a multitude of local optima, and thescapes combined with slow environmental changes should
changes in the landscape provide the opportunity to hop frorinevitably lead to a large variety of different evolutionary
one local optimum to another in a random fashion during thesolutions for the same problems.
oscillation periods. The landscapes with intermediétin- Although the EL networks used here for data analysis are
terpolate between the two extremes. This argument show@Nly meaningful in periodic landscapes, the conclusions
that ruggedness must generally promote the movement in trfawn from their study should also hold in nonperiodic situ-
genotype space for the lof regime, a situation completely ations. The reason why env'|r0nmentally guided drift be-
opposite to the case of static landscapes, where ruggednespé(;ogﬁes so efficient for smafls is that constantly new local
regarded as an impediment to the movement in the genotypg,. -
space. f he changes happen on a sow enaugh ime sca 1 e fANGScabe hos suffcent ggecess e adap
the increased mobility doasot lead to an error catastrophe the landscape’s regions%f high fitness
through which all information is lost, such as the breakdow .

fth . ies for | . @5 A N An effect tightly connected to the periodicity of the land-
of the quasispecies for large mutation ref ]'. S We saw scape, on the other hand, is the appearance of limit cycles.
in Fig. 5, the fitness is constantly in the region of averag

local : We ob his also in th | di ®rhe dynamics in oscillatin!K landscapes is above the per-
olca gpt'n;f"" 1 eTﬁ sf_erve this ";SO in ﬁl € Exam_p € [)un YIS¢olation transition dominated by noisy limit cycles, with spo-
played in Fig. 1. The fitness Is chaotically changing, bUt it ISy, ica)ly occurring transitions from one limit cycle to an-

always well above the landscape mean of 0.5. An error Cagner The system goes through several noisy limit cycles

tastrophe occurs only if the environmental changes happelqm” a stable limit cycle, or a stable fixed point, is reached.

very fast compared to the typical adaptation time of the SYSThis effect reminds one of the behavior of evolution on land-

tem. scapes with a high degree of neutrality. There, evolution pro-

So far, we disregarded noise or loss of information be-qqqs on neutral networks, with sporadic transitions between
cause of very small populations in our model. Both have th

ff ble th f : leadi | &hem, until a stable local optimum is reached.
effect to enable the acceptance of mutations leading (o IoWer 1o mode| studied in the present paper, i.e., an adaptive
fithess. Here, we could incorporate them by adding noise

tq, I : : ,
i . ; ) ; alk on an oscillatingNK landscape, is certainly too sim-
the fitness as if29], or by accepting bad mutations with N p y

bability. As | " hani d 0l listic to be accounted for as a realistic model of itheivo
SOME probabiiity. AS long as these mechanisms do ot 1€ag, 4 tion of proteins in a changing environment. In particu-
to an error catastrophe on a static landscape, they should nQ

it h the d ! lowlv chanding land-2" it can be argued whether sinusoidally changing fithess
alter very much the dynamics on a slowly changing 1and-.,nyiputions are justified. Nevertheless, such simple models
scape from what we have found here.

o : . often capture the qualitative properties of more realistic situ-
Evolution in a slowly changing environment follows a

. . Lo : ~ ations. Similar percolation transitions can probably be found
dynamics very different from the situation in a fixed envi-

. . . . also in other time-dependent landscapes with sufficient rug-
ronment. The environmentally guided drift drives genes ouéJedness P P g

of local optima, and drags th‘?m around in the_ 9enotype” 1 future work, it should be interesting to study the per-
space. We have presented eV|denc_e_ for*t_he existence of 3ation transition in more detail, and to determine for what
giant EL network forfs below some criticaf inlandscapes k3 percolating regime actually exists. Furthermore, the in-
with sufficient ruggedness. Consequently, in this regime thgg pjay between static and dynamic fitness contributions

whole genotype space can be transversed by means of endrq|d also be investigated in other fitness landscapes.
ronmentally guided drift. The guided drift can provide—in

the absence of any neutral pathways in the fitness

landscape—an efficient mechanism to generate constantly We would like to thank S. Benner for introducing us to
new genotypes, albeit at every single point in time the systhis field, T. Hirst for providing us with the manuscript of
tem seems to be trapped in a local optimum. We could showRef. [14], C. Ronnewinkel for carefully reading this manu-
that the efficiency of the environmentally guided drift is re- script, and T. Schmauch for double-checking the behavior of
lated to the ruggedness of the landscape. A more ruggesscillating NK models for a number of different parameter
landscape provides more opportunities to move around undaettings.
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